

General Instructions :

1. All question are compulsory.
2. The question paper consists of 34 questions divided into four sections A, B, C and D. Section - A comprises of 10 question of 1 mark each. Section - B comprises of 8 questions of 2 marks each. Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 6 questions of 4 marks each.
3. Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select one correct option out of the given four.
4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one lf the alternatives in all such questions.
5. Use of calculator is not permitted.
6. An additional 15 minutes time has been allotted to read this question paper only.

सामान्य निर्देश :

1. सभी प्रश्न अनिवार्य हैं।
2. इस प्रश्न पत्र में 34 प्रश्न है, जो चार खण्डों में अ, ब, स व द में विभाजित है। खण्ड - अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड - ब में 8 प्रश्न हैं और प्रत्येक प्रश्न 2 अंको के हैं। खण्ड - स में 10 प्रश्न हैं और प्रत्येक प्रश्न 3 अंको का है। खण्ड - द में 6 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको का है।
3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 1 प्रश्न 2 अंको में, 3 प्रश्न 3 अंको में और 2 प्रश्न 4 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
5. कैलकुलेटर का प्रयोग वर्जित है।
6. इस प्रश्न-पत्र को पढ़ने के लिऐ 15 मिनिट का समय दिया गया है। इस अवधि के दौरान छात्र केवल प्रश्न-पत्र को पढेंगे और वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगें।

Pre-Board Examination 2010-11

Time : 3 to $31 / 2$ Hours
Maximum Marks : 80
Total No. Of Pages : 4

अधिकतम समय : 3 से $31 / 2$
अधिकतम अंक : 80
कुल पृष्ठों की संख्या : 4

CLASS - X
 CBSE

MATHEMATICS

Section A

Q. $1 \quad$ The value of k for which the equation $x^{2}+2(k+1) x+k^{2}=0$ has equal roots is
(a) -1
(b) $-\frac{1}{2}$
(c) 1
(d) none of these
Ans. b
Q. 2 In AP consist of 31 terms if its $16^{\text {th }}$ term is m, then sum of all the terms of this AP is
(a) 16 m
(b)
47 m
(c) 31 m
(d) 52 m
Ans. c
Q. 3 Rahim and karim are friends. What is the probability that both have their birthdays on the same day in a non-leap year?
(a) $\frac{1}{365}$
(b) $\frac{1}{7}$
(c) $\frac{1}{53}$
(d) $\frac{7}{365}$

Ans. A

TMC/D/79/89
1

P.t.O.

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : $\boldsymbol{\underline { 4 2 5 1 0 9 6 0 1 ; 9 9 0 7 7 5 7 8 1 5 } \text { (} \mathbf { (P) ; ~ } \mathbf { 9 3 0 0 6 1 8 5 2 1 ; 9 4 2 5 1 1 0 8 6 0 (O) ; 9 9 9 3 4 6 1 5 2 3 ; 9 4 2 5 7 7 2 1 6 4 }}$ PREMIER INSTITUTE for $X, X I \&$ XII .© publication of any part of this paper is strictly prohibited..

Visit us at : http://www. targetmathematic.com; Email:agyat99@gmail.com.

TARGET MATHEMATICS by:- AGYAT GUPTA

Q. 4	A quadrilateral ABCD is drawn to circumscribe a circle. If $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}$ and $\mathrm{CD}=14 \mathrm{~cm}$, then AD is equal to (a) 10 cm (b) 11 cm (c) 12 cm (d) 14 cm Ans b
Q. 5	The circumferences of two concentric circles forming a ring are 88 cm and 66 cm respectively. The width of the ring is (a) 14 cm (b) 7 cm (c) $7 / 2 \mathrm{~cm}$ (d) 21 cm Ans c
Q. 6	If two consecutive vertices of a rhombus are $(2,-1),(3,4)$ and intersection point of its diagonal are (0 , then the remaining two vertex are (a) $(-3,-2) \&(-2,3)$ (b) $(3,2) \&(-2,3)(c)(-3,-2) \&$ $(2,3)$ (d) $(1,2) \&(-3,-2)$ (Ans. a)
Q. 7	The difference between circumference and the radius of a circle is 37 m . the circumference of that circle is (a) 7 m (b) 44 m (c) 154 m (d) 77 m Ans b
Q. 8	Two tangents TP and TQ are drawn from an external point T to a circle with centre O .If they are inclined to each other at an angle of 100° then what is the value of $\angle P O Q$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
Q. 9	If α, β are the roots of the equation $x^{2}+k x+12=0$ such that $\alpha-\beta=1$, the value of k is : (a) 0 (b) ± 5 (c) ± 1 (d) ± 7 \{Ans.d
Q. 10	If the height of a tower is half the height of the flagstaff on it and the angle of elevation of the top of the tower as seen from a point on the ground is 30°. Then the angle of elevation of the top of the flagstaff as seen from the same point is (a) 30° (b) 45° (c) 90° (d) 60° . Ans d
	Section B
Q. 11	How many spherical bullets can be made out of a solid cube of lead whose edge measures 44 cm , each bullet being 4 cm in diameter. Ans 2541
Q. 12	One root of the equation $2 x^{2}-8 x+m=0$ is $5 / 2$. Find the other root and the value of m. Ans $m=\frac{15}{2} ; \alpha=\frac{3}{2}$
Q. 13	A pendulum swings through an angle of 30° and describes an $\operatorname{arc} 8.8 \mathrm{~cm}$ in length. Find the length of the pendulum. Ans $1=16.8 \mathrm{~cm}$
Q. 14	A bag contains 5 red balls and some white balls. If the probability of drawing a white ball is double that of red ball, find the number of white balls in the bag. Ans nu. Of white balls $=10$
Q. 15	The ordinate of a point is twice its abscissa. Find the coordinates of the point if its distance from $(4,3)$ is $\sqrt{10}$. Ans $(1,2)(3,6)$
Q. 16	In given figure PQR is a right angled triangle with $\mathrm{PQ}=12 \mathrm{~cm}$ and $\mathrm{QR}=5 \mathrm{~cm}$. A circle with centre O and radius x is inscribed in $\triangle P Q R$. Find the value of x . OR Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that \angle $\mathrm{PTQ}=2 \angle \mathrm{OPQ} .$

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : $\mathbf{9 4 2 5 1 0 9 6 0 1 ; 9 9 0 7 7 5 7 8 1 5}$ (\mathbf{P}); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for $X, X I \&$ XII.© publication of any part of this paper is strictly prohibited..

Visit us at : http://www. targetmathematic.com; Email:agyat99@gmail.com.

TARGET MATHEMATICS by:- AGYAT GUPTA Page 3 of 4

Q. 17	Using quadratic formula, solve the following quadratic equation for x : $x^{2}-4 a x+4 a^{2}-b^{2}=0$ Ans $\{2 a+b, 2 a-b\}$
Q. 18	Prove that the coordinates of the centroid of a $\Delta \mathrm{ABC}$ with vertices $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$ are given by $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$.
	Section C
Q. 1	A letter is chosen at random from the English alphabet. Find the probability that the letter chosen (a) is a vowel,(b) is a consonant © precedes P (d) follower r.Ans.(a)5/26 (b) 21/26 (c) 15/26 (d) 4/13
Q. 2	Determine the common difference of the AP whose sum of m terms is $x m^{2}+y m$. Ans. $\mathrm{a}=\mathrm{x}+\mathrm{y} \& \mathrm{~d}=$ 2 x OR Prove that sum of n term of A. P. is $S_{n}=\frac{n}{2}[2 a+(n-1) d]$.
Q. 2	50 circular plates, each of radius 7 cm and thickness $\frac{1}{2} \mathrm{~cm}$ are placed one above another to form a solid right circular cylinder. Find the total surface area and the volume of the cylinder so formed. Ans. 1408 sq cm OR A hemispherical tank of radius $1 \frac{3}{4} \mathrm{~m}$ is full of water. It is connected with a pipe which empties it at the rate of 7 litres per second. How much time will it take to empty the tank completely ? Ans. $1604.16 \mathrm{sec}=26.73$ minutes
Q. 22	A brooch is made with silver wire in the form of a circle with diameter 35 mm . The wire is also used in making 5 diameters which divide the circle into 10 equal sectors as shown in Fig.. Find : (i) the total length of the silver wire required. (ii) the area of each sector of the brooch. $\text { Ans (i) } 285 \mathrm{~mm} \text { (ii) Area }=\frac{385}{4} \mathrm{~mm}^{2}$ OR The area of an equilateral triangle is $1732.05 \mathrm{~cm}^{2}$. taking each vertex as centre; a circle is drawn with radius equal to half the length of the side of the triangle. Find the area of the triangle not included in the circles. (Take $\pi=3.14 \& \sqrt{3}=1.73205$). Ans. $\mathrm{r}=100 \mathrm{~cm}$ side of square $=200 \mathrm{~cm}$ $\&$ area $=1620.51 \mathrm{sq} \mathrm{cm}$
Q. 23	From the top of a lighthouse, the angles of depression of two ships on its two sides are observed to be α and β. If the height of the lighthouse is h meters and the line joining the ships passes through the foot of the lighthouse, show that the distance between the ships is $\frac{h(\tan \alpha+\tan \beta)}{\tan \alpha \tan \beta}$.
Q. 24	Using $\mathrm{A}(4,-6), \mathrm{B}(3,-2)$ and $\mathrm{C}(5,2)$, verify that a median of the triangle ABC divides it into two triangles of equal areas.
Q. 25	PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangent at $\mathrm{P} \& \mathrm{Q}$ intersect at a point T . Find the length of TP. Ans TP =20/3 CM
Q. 26	Which term of the sequences $114,109,104 \ldots \ldots$. is the first negative term? Ans $\mathrm{n}=24^{\text {th }}$ term

TMC/D/79/89 $3 \quad$ P.T.O.
Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. :2337615; 4010685®, $92022217922630601(O)$ Mobile : $\mathbf{9 4 2 5 1 0 9 6 0 1 ; 9 9 0 7 7 5 7 8 1 5 (\mathbf { P }) ; \mathbf { 9 3 0 0 6 1 8 5 2 1 ; 9 4 2 5 1 1 0 8 6 0 (O) ; 9 9 9 3 4 6 1 5 2 3 ; 9 4 2 5 7 7 2 1 6 4 }}$ PREMIER INSTITUTE for $X, X I \&$ XII .© publication of any part of this paper is strictly prohibited..

Visit us at : http://www. targetmathematic.com; Email:agyat99@gmail.com.

TARGET MATHEMATICS by:- AGYAT GUPTA Page 4 of 4

Q. 27	If centre of circle passing through (a,-8), (b,-9) and (2,1) is $(2,-4)$, find the value of a and b. Ans $a=$ $5,-1 \mathrm{~b}=2$
Q. 28	Prove that the parallelogram circumscribing a circle is a rhombus.
	Section D
Q. 29	If the equation $\left(1+m^{2}\right) x^{2}+2 m c x+\left(c^{2}-a^{2}\right)=0$ has equal roots, prove that $c^{2}=a^{2}\left(1+m^{2}\right)$. OR Out of a number of Saras birds, one forth the number are moving about in lotus plants; 1/9 th coupled (along) with $1 / 4$ as well as 7 times the square root of the number move on a hill; 56 birds remain in vakula trees. What is the total number of birds ? Ans Total number of birds $=576$ $\begin{gathered} x-18 \sqrt{x}-144=0 \\ \frac{x}{4}+\frac{x}{9}+\frac{x}{4}+7 \sqrt{x}+56=x \sqrt{x}=y \Rightarrow y^{2}-18 y-144=0 \\ y=24 \Rightarrow x=576 \end{gathered}$
Q. 30	If S_{1}, S_{2}, S_{3} be the sum of $\mathrm{n}, 2 \mathrm{n}$ and 3 n terms respectively of an A.P. prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.
Q. 31	A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm . Find its capacity .[Use $\pi=\frac{22}{7}$]. Ans $: V=\frac{4928}{3}=1642.66 \mathrm{~cm}^{3}$
Q. 32	Draw a triangle ABC with side $\mathrm{BC}=7 \mathrm{~cm}, \angle B=45^{\circ}, \angle A=105^{\circ}$, then construct a triangle whose sides are $\frac{3}{5}$ times the corresponding side of $\triangle A B C$.
Q. 33	A copper wire 4 mm in diameter is evenly bound about a cylinder whose length is 24 cm and diameter 20 cm so as to cover the whole surface. Find the length of the wire in terms of π. Ans :Length of wire $=1200 \pi$
Q. 34	A man standing on the deck of a ship, which is 10 m above the water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the hill from the ship and the height of the hill. $d=10 \sqrt{3}=17.32 ; h=40 \mathrm{~m}$ OR The angle of elevation of a jet fighter from a point A on the ground is 60°. After a flight of 15 seconds, the angle of elevation changes to 30°. If the jet is flying at a speed of $720 \mathrm{~km} / \mathrm{hour}$, find the constant height at which the jet is flying. $1500 \sqrt{3} m=2598$
	*******************_ _ *

