TARGET MATHEMATICS by:- AGYAT GUPTA Page 1 of 4

Code No. Series AG-8-9999 General Instructions :

- All question are compulsory. 1.
- 2. The question paper consists of 34 questions divided into four sections A,B,C and D. Section - A comprises of 10 question of 1 mark each. Section – B comprises of 8 questions of 2 marks each. Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 6 questions of 4 marks each.
- Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one 3. correct option out of the given four.
- There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 4. questions of three marks each and 2 questions of four marks each. You have to attempt only one If the alternatives in all such questions.
- Use of calculator is not permitted. 5.
- An additional 15 minutes time has been allotted to read this question paper only. 6.

सामान्य निर्देश :

सभी प्रश्न अनिवार्य हैं। 1.

- 2. इस प्रश्न पत्र में 34 प्रश्न है, जो चार खण्डों में अ, ब, स व द में विभाजित है। खण्ड – अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड – ब में 8 प्रश्न हैं और प्रत्येक प्रश्न 2 अंको के हैं। खण्ड – स में 10 प्रश्न हैं और प्रत्येक प्रश्न 3 अंको का है। खण्ड – द में 6 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको का है।
- प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चूनें। 3.
- इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 1 प्रश्न 2 अंको में, 3 प्रश्न 3 अंको में और 2 प्रश्न 4 अंको में दिए गए 4. हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- कैलकुलेटर का प्रयोग वर्जित है। 5.
- इस प्रश्न–पत्र को पढने के लिऐ 15 मिनिट का समय दिया गया है। इस अवधि के दौरान छात्र केवल प्रश्न–पत्र को पढेंगे और वे 6 उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगें।

Pre-Board Examination 2010 -11

Time : 3 to 3 $\frac{1}{2}$ Hours अधिकतम समय : 3 से 3 1/2 Maximum Marks: 80 अधिकतम अंक : 80 Total No. Of Pages : 4 कुल पृष्ठों की संख्या : 4 CLASS - X CBSE MATHEMATICS Section A The value of k for which the equation $x^2 + 2(k+1)x + k^2 = 0$ has equal roots is Q.1 $-\frac{1}{2}$ (c) 1 (d) none of these (a) -1 (b) Ans. b In AP consist of 31 terms if its 16th term is m, then sum of all the terms of this AP is Q.2 16 m 47 m (c) 31 m (d) 52 m (a) (b) Ans. c Rahim and karim are friends. What is the probability that both have their birthdays on the same day in **Q.3** a non-leap year ? 1 (c) $\frac{1}{53}$ (b) (d) (a) 365 365 P.T.O. TMC/D/79/89 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X, XI & XII. © publication of any part of this paper is strictly prohibited.. Visit us at : http://www.targetmathematic.com; Email:agyat99@gmail.com.

NVFRTF To remove this message, purchase the product at www.SolidDocuments.com

Q.4A quadrilateral ABCD is drawn to circumscribe a circle. If $AB = 12cm$, $BC = 15cm$ and $CD = 14cm$ then AD is equal to (a) 10cm (b) 11cm (c) 12cm (d) 14cm Ans bQ.5The circumferences of two concentric circles forming a ring are 88 cm and 66 cm respectively. The width of the ring is (a) 14 cm (b) 7 cm (c) 7/2 cm (d) 21 cm Ans cQ.6If two consecutive vertices of a rhombus are $(2,-1)$, $(3, 4)$ and intersection point of its diagonal are of then the remaining two vertex are (a) $(-3,-2) & (-2, 3)$ (b) $(3,2) & (-2, 3)(c) & (-3,-2) & (2,3)(d) & (1,2) & (-3,-2) & (Ans. a)$ Q.7The difference between circumference and the radius of a circle is 37m. the circumference of that circle is (a) 7m (b) 44m (c) 154m (d) 77m Ans bQ.8Two tangents TP and TQ are drawn from an external point T to a circle with centre O .If they a inclined to each other at an angle of 100^0 then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
 then AD is equal to (a) 10cm (b) 11cm (c) 12cm (d) 14cm Ans b Q.5 The circumferences of two concentric circles forming a ring are 88 cm and 66 cm respectively. The width of the ring is (a) 14 cm (b) 7 cm (c) 7/2 cm (d) 21 cm Ans c Q.6 If two consecutive vertices of a rhombus are (2,-1), (3, 4) and intersection point of its diagonal are then the remaining two vertex are (a) (-3,-2) & (-2, 3) (b) (3,2) & (-2, 3)(c) (-3,-2) & (2,3) (d) (1,2) & (-3,-2) (Ans. a) Q.7 The difference between circumference and the radius of a circle is 37m. the circumference of that circle is (a) 7m (b) 44m (c) 154m (d) 77m Ans b Q.8 Two tangents TP and TQ are drawn from an external point T to a circle with centre O .If they a inclined to each other at an angle of 100⁰ then what is the value of ∠POQ? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
 (a) 10cm (b) 11cm (c) 12cm (d) 14cm Ans b Q.5 The circumferences of two concentric circles forming a ring are 88 cm and 66 cm respectively. The width of the ring is (a) 14 cm (b) 7 cm (c) 7/2 cm (d) 21 cm Ans c Q.6 If two consecutive vertices of a rhombus are (2,-1), (3, 4) and intersection point of its diagonal are (a) (-3,-2) & (-2, 3) (b) (3,2) & (-2, 3)(c) (-3,-2) & (2,3) (d) (1,2) & (-3,-2) (Ans. a) Q.7 The difference between circumference and the radius of a circle is 37m. the circumference of that circle is (a) 7m (b) 44m (c) 154m (d) 77m Ans b Q.8 Two tangents TP and TQ are drawn from an external point T to a circle with centre O. If they a inclined to each other at an angle of 100⁰ then what is the value of ∠POQ? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
Q.5The circumferences of two concentric circles forming a ring are 88 cm and 66 cm respectively. The width of the ring is (a) 14 cm (b) 7 cm (c) 7/2 cm (d) 21 cm Ans cQ.6If two consecutive vertices of a rhombus are $(2,-1)$, $(3, 4)$ and intersection point of its diagonal are then the remaining two vertex are (a) $(-3,-2) \& (-2, 3)$ (b) $(3,2) \& (-2, 3)(c) (-3,-2) \& (2,3)(d) (1,2) \& (-3,-2)$ (Ans. a)Q.7The difference between circumference and the radius of a circle is 37m. the circumference of that circle is (a) 7m (b) 44m (c) 154m (d) 77m Ans bQ.8Two tangents TP and TQ are drawn from an external point T to a circle with centre O .If they a inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
width of the ring is (a) 14 cm (b) 7 cm (c) 7/2 cm (d) 21 cm Ans cQ.6If two consecutive vertices of a rhombus are $(2,-1)$, $(3, 4)$ and intersection point of its diagonal are then the remaining two vertex are (a) $(-3,-2) & (-2, 3)$ (b) $(3,2) & (-2, 3)(c) (-3,-2) & (2,3)(d) (1,2) & (-3,-2)$ (Ans. a)Q.7The difference between circumference and the radius of a circle is 37m. the circumference of that circle is (a) 7m (b) 44m (c) 154m (d) 77m Ans bQ.8Two tangents TP and TQ are drawn from an external point T to a circle with centre O .If they a inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
(a) 14 cm (b) 7 cm (c) 7/2 cm (d) 21 cm Ans cQ.6If two consecutive vertices of a rhombus are $(2,-1)$, $(3, 4)$ and intersection point of its diagonal are then the remaining two vertex are (a) $(-3,-2) & (-2, 3)$ (b) $(3,2) & (-2, 3)(c) (-3,-2) & (2,3)(d) (1,2) & (-3,-2)$ (Ans. a)Q.7The difference between circumference and the radius of a circle is 37m. the circumference of that circle is (a) 7m (b) 44m (c) 154m (d) 77m Ans bQ.8Two tangents TP and TQ are drawn from an external point T to a circle with centre O .If they a inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
Q.6If two consecutive vertices of a rhombus are $(2,-1)$, $(3, 4)$ and intersection point of its diagonal are then the remaining two vertex are (a) $(-3,-2) & (-2, 3)$ (b) $(3,2) & (-2, 3)(c) & (-3,-2) & (2,3)(d) & (1,2) & (-3,-2) & (Ans. a) Q.7The difference between circumference and the radius of a circle is 37m. the circumference of thatcircle is(a) 7m(b) 44m(c) 154m(d) 77mAns bQ.8Two tangents TP and TQ are drawn from an external point T to a circle with centre O .If they inclined to each other at an angle of 100^{\circ} then what is the value of \angle POQ?(a) 70 (b) 60 (c) 80 (d) none of these Ans c$
then the remaining two vertex are (a) $(-3,-2) \& (-2,3)$ (b) $(3,2) \& (-2,3)(c) (-3,-2) \& (2,3)(d) (1,2) \& (-3,-2)$ (Ans. a) Q.7 The difference between circumference and the radius of a circle is 37m. the circumference of that circle is (a) 7m (b) 44m (c) 154m (d) 77m Ans b Q.8 Two tangents TP and TQ are drawn from an external point T to a circle with centre O. If they a inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
(a) $(-3,-2) \& (-2,3)$ (b) $(3,2) \& (-2,3)(c) (-3,-2) \& (2,3)(d) (1,2) \& (-3,-2)$ (Ans. a) Q.7 The difference between circumference and the radius of a circle is 37m. the circumference of that circle is (a) 7m (b) 44m (c) 154m (d) 77m Ans b Q.8 Two tangents TP and TQ are drawn from an external point T to a circle with centre O. If they inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
Q.7 The difference between circumference and the radius of a circle is $37m$. the circumference of that circle is (a) $7m$ (b) $44m$ (c) $154m$ (d) $77m$ Ans b Q.8 Two tangents TP and TQ are drawn from an external point T to a circle with centre O. If they a inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
Q.7 The difference between circumference and the radius of a circle is 37 m. the circumference of that circle is (a) 7m (b) 44m (c) 154m (d) 77m Ans b Q.8 Two tangents TP and TQ are drawn from an external point T to a circle with centre O. If they a inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
Q.8 (a) $7m$ (b) $44m$ (c) $154m$ (d) $77m$ Ans b Two tangents TP and TQ are drawn from an external point T to a circle with centre O. If they inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
Q.8 (a) $7m$ (b) $44m$ (c) $154m$ (d) $77m$ Ans b Two tangents TP and TQ are drawn from an external point T to a circle with centre O. If they inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
Q.8 Two tangents TP and TQ are drawn from an external point T to a circle with centre O. If they inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
inclined to each other at an angle of 100° then what is the value of $\angle POQ$? (a) 70 (b) 60 (c) 80 (d) none of these Ans c
(a) 70 (b) 60 (c) 80 (d) none of these Ans c
(u) / 0 (v) 0 (v) 0 (v) 10 10 01 010 01 01000 01 01000 01 01000 01 01
O 9 If $a_1 a_2$ are the rests of the equation $u^2 + bu + 12$ of such that $a_1 a_2 = 0$. If the value of b_1 is a
Q.7 If α, β are the roots of the equation $x^2 + kx + 12 = 0$ such that $\alpha - \beta = 1$, the value of k is :
(a) 0 (b) ± 5 (c) ± 1 (d) ± 7 {Ans.d
Q.10 If the height of a tower is half the height of the flagstaff on it and the angle of elevation of the top of
the tower as seen from a point on the ground is 30° . Then the angle of elevation of the top of the
flagstaff as seen from the same point is
(a) 30° (b) 45° (c) 90° (d) 60° . Ans d
Section B
Section B
Q.11 How many spherical bullets can be made out of a solid cube of lead whose edge measures 44 cm, ea
bullet being 4 cm in diameter. Ans 2541
Q.12 One root of the equation $2x^2 - 8x + m = 0$ is 5/2. Find the other root and the value of m.
15 3
$m = \frac{1}{2}; \alpha = \frac{1}{2}$
2 2
Q.13 A pendulum swings through an angle of 30° and describes an arc 8.8 cm in length. Find the length
the pendulum. Ans $I = 16.8$ cm
Q.14 A bag contains 5 red balls and some white balls. If the probability of drawing a white ball is dou
that of red ball, find the number of white balls in the bag. Ans nu. Of white balls = 10
Q.15 The ordinate of a point is twice its abscissa. Find the coordinates of the point if its distance from (4,
is $\sqrt{10}$. Ans (1,2) (3,6)
0.16 In given figure PQR is a right angled triangle with $PQ = 12$ cm and $QR = 5$ cm. A circle with cen
O and radius x is inscribed in ΔPQR . Find the value of x. \Box
OR
Two tangents TP and TO are drawn to a circle with centre O from an external point T. Prove that
$\mathbf{T} \triangleleft \mathbf{C} = \begin{pmatrix} \mathbf{v} \\ \mathbf{v} \end{pmatrix}$
$PTQ = 2 \angle OPQ.$
TMC/D/79/89 2 P.T.O.
Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony
Ph. :2337615; 4010685 ^(b) , 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164
PREMIER INSTITUTE for X, XI & XII. (1) publication of any part of this paper is strictly prohibited
Visit us at : http://www.targetmathematic.com; Email:agyat99@gmail.com.
locument was created using SCILID CONVERTER PDF To remove this message, pu

	TARGET MATHEMATICS by:- AGYAT GUPTA Page 3 of 4						
Q.17	Using quadratic formula, solve the following quadratic equation for x: $x^2 - 4ax + 4a^2 - b^2 = 0$ Ans $\{2a+b,2a-b\}$						
Q.18	Prove that the coordinates of the centroid of a $\triangle ABC$ with vertices A(x_1 , y_1), B(x_2 , y_2) and C (x_3 , y_3) are given by $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$.						
	Section C						
Q.19	A letter is chosen at random from the English alphabet. Find the probability that the letter chosen (a) is a vowel,(b) is a consonant © precedes P (d) follower r.Ans.(a)5/26 (b) 21/26 (c) 15/26 (d) 4/13						
Q.20	Determine the common difference of the AP whose sum of m terms is $xm^2 + ym$. Ans. $a = x + y \& c$						
	OR OR						
	Prove that sum of n term of $A = D$ is $\frac{n}{2}$ is $\frac{n}{2}$ is $\frac{n}{2}$.						
Prove that sum of n term of A . P . IS $S_n = \frac{n}{2} [2a + (n-1)d]$.							
Q.21	50 circular plates, each of radius 7 cm and thickness $\frac{1}{2}$ cm are placed one above another to form a						
	solid right circular cylinder. Find the total surface area and the volume of the cylinder so formed. Ans. 1408 sq cm						
	OR						
	A hemispherical tank of radius $1\frac{3}{4}$ m is full of water. It is connected with a pipe which empties it at						
	the rate of 7 litres per second. How much time will it take to empty the tank completely ? Ans.1604.16 sec = 26.73 minutes						
Q.22	A brooch is made with silver wire in the form of a circle with diameter 35 mm. The wire is also used in making 5 diameters which divide the circle into 10 equal sectors as shown in Fig Find : (i) the						
	total length of the silver wire required. (ii) the area of each sector of the brooch.						
	Ans (i) 283 mm (ii) $Area = \frac{1}{4}mm^2$						
	OR						
	with radius equal to half the length of the side of the triangle. Find the area of the triangle not						
	included in the circles. (Take = $3.14 \& \sqrt{3} = 1.73205$). Ans. r = 100 cm side of square = 200 cm						
0.02	& area = 1620.51 sq cm						
Q.23	α and β . If the height of the lighthouse is h meters and the line joining the ships passes through the						
	foot of the lighthouse, show that the distance between the ships is $\frac{h(\tan \alpha + \tan \beta)}{\tan \alpha \tan \beta}$.						
Q.24	Using A (4,-6), B(3,-2) and C(5,2), verify that a median of the triangle ABC divides it into two triangles of equal areas.						
Q.25	PQ is a chord of length 8 cm of a circle of radius 5 cm . The tangent at P & Q intersect at a point T . Find the length of TP . Ans $TP = 20/3 CM$						
Q.26	Which term of the sequences $114,109,104$ is the first negative term? Ans $n = 24^{th}$ term						

TMC/D/79/89

P.T.O.

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

3

Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X, XI & XII. © publication of any part of this paper is strictly prohibited.. Visit us at : http://www. targetmathematic.com; Email:agyat99@gmail.com.

This document was created using

e

SOLID CONVERTER P

To remove this message, purchase the product at www.SolidDocuments.com

	TARGET MATHEMATICS by:- AGYAT GUPTA Page 4 of 4					
Q.27	If centre of circle passing through (a,-8), (b,-9) and (2,1) is (2,-4), find the value of a and b. Ans a = $5,-1 b = 2$					
Q.28	Prove that the parallelogram circumscribing a circle is a rhombus.					
	Section D					
Q.29	If the equation $(1+m^2)x^2 + 2mcx + (c^2 - a^2) = 0$ has equal roots, prove that $c^2 = a^2(1 + m^2)$. OR					
	Out of a number of Saras birds, one forth the number are moving about in lotus plants ; $1/9$ th coupled (along) with $\frac{1}{4}$ as well as 7 times the square root of the number move on a hill; 56 birds remain in vakula trees. What is the total number of birds ? Ans Total number of birds = 576					
	$\frac{x}{4} + \frac{x}{9} + \frac{x}{4} + 7\sqrt{x} + 56 = x \sqrt{x} = y \Rightarrow y^2 - 18 y - 144 = 0$ $y = 24 \Rightarrow x = 576$					
Q.30	If S_1, S_2, S_3 be the sum of n, 2n and 3n terms respectively of an A.P. prove that $S_3 = 3(S_2 - S_1)$.					
Q.31	A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm. Find its capacity .[Use $\pi = \frac{22}{7}$]. Ans					
	$V = \frac{4928}{3} = 1642.66 cm^3$					
Q.32	Draw a triangle ABC with side BC = 7cm, $\angle B = 45^{\circ}$, $\angle A = 105^{\circ}$, then construct a triangle who					
	sides are $\frac{5}{5}$ times the corresponding side of $\triangle ABC$.					
Q.33	A copper wire 4 mm in diameter is evenly bound about a cylinder whose length is 24 cm and diameter 20 cm so as to cover the whole surface. Find the length of the wire in terms of π . Ans :Length of wire = 1200π					
Q.34	A man standing on the deck of a ship, which is 10m above the water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30° . Calculate					
	the distance of the hill from the ship and the height of the hill. $d = 10\sqrt{3} = 17.32; h = 40m$					
	The angle of elevation of a jet fighter from a point A on the ground is 60° . After a flight of 15seconds, the angle of elevation changes to 30° . If the jet is flying at a speed of 720 km/hour, find the constant					
	neight at which the jet is Hying. $1500\sqrt{5m} = 2598$ ************************************					

TMC/D/79/89	4		P.T.O.			
Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony						
Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164						
PREMIER INSTITUTE for X, XI & XII. © publication of any part of this paper is strictly prohibited						
Visit us at : http://www.targetmathematic.com; Email:agyat99@gmail.com.						
This document was created using	Solid C	ONVERTER	PDF To remove this message, purchase the product at www.SolidDocuments.com			